Dust Module

This module primarily implements two components: the dust transport term and the dust drag source term.

Equations for Gas-Dust System

\[\begin{align} \frac{\partial \rho_{\mathrm{g}}}{\partial t} + \nabla \cdot (\rho_{\mathrm{g}} \boldsymbol{v}_{\mathrm{g}}) &= 0, \\ \frac{\partial (\rho_{\mathrm{g}} \boldsymbol{v}_{\mathrm{g}})}{\partial t} + \nabla \cdot (\rho_{\mathrm{g}} \boldsymbol{v}_{\mathrm{g}} \otimes \boldsymbol{v}_{\mathrm{g}} + P_{\mathrm{g}} \mathbf{I}) &= \sum_{n=1}^{N} \rho_{\mathrm{d},n} \frac{\boldsymbol{v}_{\mathrm{d},n} - \boldsymbol{v}_{\mathrm{g}}}{T_{\mathrm{s},n}}, \\ \frac{\partial E_{\mathrm{g}}}{\partial t} + \nabla \cdot \left[(E_{\mathrm{g}} + P_{\mathrm{g}}) \boldsymbol{v}_{\mathrm{g}}\right] &= \sum_{n=1}^{N} \rho_{\mathrm{d},n} \frac{\boldsymbol{v}_{\mathrm{d},n} - \boldsymbol{v}_{\mathrm{g}}}{T_{\mathrm{s},n}} \cdot \boldsymbol{v}_{\mathrm{g}} + \omega \sum_{n=1}^{N} \rho_{\mathrm{d},n} \frac{(\boldsymbol{v}_{\mathrm{d},n} - \boldsymbol{v}_{\mathrm{g}})^{2}}{T_{\mathrm{s},n}}, \\ \frac{\partial \rho_{\mathrm{d},n}}{\partial t} + \nabla \cdot (\rho_{\mathrm{d},n} \boldsymbol{v}_{\mathrm{d},n}) &= 0, \\ \frac{\partial (\rho_{\mathrm{d},n} \boldsymbol{v}_{\mathrm{d},n})}{\partial t} + \nabla \cdot (\rho_{\mathrm{d},n} \boldsymbol{v}_{\mathrm{d},n} \otimes \boldsymbol{v}_{\mathrm{d},n}) &= \rho_{\mathrm{d},n} \frac{\boldsymbol{v}_{\mathrm{g}} - \boldsymbol{v}_{\mathrm{d},n}}{T_{\mathrm{s},n}}, \end{align} \]

where \(\omega\) controls the level of frictional heating, with \(\omega = 0\) turning it off and \(\omega = 1\) depositing all dissipation into the gas.

Variable Storage

The dust cell-centred conserved variables (\(\rho_{\mathrm{d}}\), \(\rho_{\mathrm{d}}\vec{v_{\mathrm{d}}}\)) are added to MultiFab.

Reconstruction and Riemann Solver

Dust reconstruction is performed together with gas using the same method. The Riemann Solver used is as follows:

In one dimension along the x-direction, given the left/right states \(W_d^{L/R}\), one can provide the Riemann flux for conserved variables as follows. The density flux reads (Huang & Bai 2022):

\[ \begin{align*} F^{\text a}_x(\rho_d) = \begin{cases} \rho_d^L v_{d,x}^L & \text{if } v_{d,x}^L > 0, \, v_{d,x}^R \ge 0, \\ \rho_d^R v_{d,x}^R & \text{if } v_{d,x}^L \le 0, \, v_{d,x}^R < 0, \\ \rho_d^L v_{d,x}^L + \rho_d^R v_{d,x}^R & \text{if } v_{d,x}^L > 0, \, v_{d,x}^R < 0, \\ 0 & \text{else}. \end{cases} \end{align*} \]

Similar expressions hold for the momentum flux for all directions.

This is implemented in src/dust/dustRiemannSolver.hpp and called in DustSystem::ComputeDustFluxes to compute the dust advection flux.

Time Integrator

A Strang-split method (Tedeschi-Prades et al. 2025) is used to integrate the dust-gas system. The Strang-split update can be expressed as:

\[ \boldsymbol u^{n+1} = \mathcal{D}_{\Delta t/2} \mathcal{H}_{\Delta t} \mathcal{D}_{\Delta t/2} \boldsymbol u^n \]

where \(\mathcal{D}\) is the dust-gas drag operator and \(\mathcal{H}\) is the hydrodynamics operator (including both gas and dust transport). The hydrodynamics operator \(\mathcal{H}\) is handled using the explicit RK2 scheme. The drag operator \(\mathcal{D}\) is implemented in src/dust/dust_system.hpp and called in QuokkaSimulation::addStrangSplitSourcesWithBuiltin via DustSystem::computeDustDrag.

CFL Condition for Dust

For the dust-gas coupled system with N dust species, we use the following CFL condition:

\[ \Delta t_{\mathrm{CFL}} = C_{\mathrm{CFL}} \cdot \min_{\mathrm{cells}} \left( \frac{\Delta x}{\max\left( |v_{\mathrm{g}}| + c_s, \max_{n=1}^{N} |v_{\mathrm{d},n}|+c_s \right)} \right). \]

Runtime Controls

The following input parameters tune the dust module and are documented in more detail in Runtime parameters:

  • alpha – Inverse of dust stopping time.
  • omega – Controls the level of frictional heating.